目录


1 Image Classification Introduction

Image Classification:给出1幅图片,在固定的标签(Label)中给出图片中对应物体的概率分布。这个任务定义看起来简单,实现起来却不容易。而且很多Computer Vision task最后都可化约为Image Classification问题。

Image Classification有如下几个主要难点:

  1. 视角变化(Viewpoint variation)

  2. 大小变化(Scale variation)

  3. 变形(Deformation)

  4. 遮盖(Occlusion)

  5. 光照变化(Illumination Conditions)

  6. 背景杂波(Background Clutter)

  7. 类内变化(Intra-class Variation)

Image Classification Challenges

1.1 Nearest Neighbor Classifier

1.1.1 k-Nearest Neighbor

1.2 Train/Val/Test Split

1.3 Pros/Cons of Nearest Neighbor

2 Summary

2.1

2.2 Applying kNN in practice

Image Classification Challenges

repeat until convergence:

6 参考资料


Share Post

Twitter Google+

Shunmian

The only programmers in a position to see all the differences in power between the various languages are those who understand the most powerful one.