目录
1 最大流
1.1 介绍
:Context(一):Maximium Flow/1.1 introduction.png)
1.2 Ford-Fulkerson Algorithm
:Context(一):Maximium Flow/1.2 Ford-Fulkerson Algorithm.png)
需要注意的是backward edge指某个和foward方向一样的edge B共同进入某个vertext的edge A。此时B flow的减少就能增加A flow,因此B称为A的backward edge。
1.3 maxflow-mincut theorem
:Context(一):Maximium Flow/1.3 maxflow-mincut theorem.png)
1.4 running time analysis
:Context(一):Maximium Flow/1.4 running time analysis.png)
1.5 Java implementation
:Context(一):Maximium Flow/1.5 Java implementation.png)
1.6 Application
:Context(一):Maximium Flow/1.6 Application.jpg)
2 总结
3 参考资料